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Abstract. The existence of analytic normal forms for an area-preserving map with an elliptic 
fixed point is considered. If the linear frequency is diophantine, the complexified map can 
be analytically conjugated with an integrable map in a disc ofthe complex radial coordinate 
r excluding a sequence of sets, whose measure decreases exponentially fast as we approach 
the origin; the analyticity in the angle 0 is just a strip. The non-analyticity domains 
correspond to the regions where the topology of the orbits changes since nonlinear 
resonances are present and the modulus of the residue of the leading poles, provided by 
perturbation theory, is the square of the width of the corresponding chains of islands. This 
suggests a relation between clusters of singularities of the normalizing transformation and 
changes in the topology of the orbits. 

Integrability remains one the basic problems for Hamiltonian systems, since Poincar6 
[ I ]  proved the non-existence of analytic first integral of motion beyond the Hamiltonian 
itself and Siegel [2] showed that this property is generic. The KAM theory [3-5] has 
shown that invariant manifolds like tori locally exist, for slightly perturbed integrable 
systems and that their measure is large for small perturbations. 

On the other hand more recently Nekhoroshev [6]  proved the asymptotic character 
of perturbative solution providing optimal estimates for the remainders and related 
stability results for exponentially long (in the inverse of perturbation) times. 

The above picture is not at all contradictory; indeed what Poincar6 and Siegel 
claim is the non-existence of analytic first integrals defined in open sets (such as 
polydiscs in Cartesian coordinates). This is consistent with the divergence of Birkhoff 
series and with the local existence of real first integrals in Cantor-like sets, dictated 
by the KAM theory. 

A unifying picture is obtained for Hamiltonian systems with two degrees of freedom 
by considering an area-preserving map with an elliptic fixed point with linear diophan- 
tine frequency and showing that analytic first integrals of motion can indeed be defined 
not in a polydisc, but in its complement with respect to a Cantor-like set intersecting 
the real phase space. The technique used to obtain this result is a combination of 
perturbation theory, Nekhoroshev-like remainder estimates and Newton’s techniques 
borrowed from KAM theory for analyticity detection and analytic continuation. 

The singularity structure is also investigated in more detail by using a functional 
equation for the Fourier components. This equation, proposed by Siegel and Moser 

0305.4470/92/080427+06$04.50 0 1992 IOP Publishing Ltd L427 



L428 Letter to the Editor 

[7] in order to prove the convergence of the normal forms in the hyperbolic case, 
allows to establish the convergence for any complex fixed point and shows that the 
loss of analyticity in the elliptic case is due exclusively to the small divisors, namely 
to the nonlinear resonances. 

By iterating this equation a sequence of non-perturbative approximations (with 
memomorphic functions) is obtained, whose singularities are poles corresponding to 
the nonlinear resonances. This result was first suggested by a leading divisors asymptotic 
analysis [8,9]. To any nonlinear resonance there corresponds a pole in the real or 
imaginary r axis [IO]; the real poles are located at the centre of the corresponding 
chains of islands and the residue of the poles is the square of the width of the islands 
themselves. This picture is fully confirmed by the functional equation, which exhibits 
the mechanism of self generation of singularities. 

The complete structure of singularities is still being explored in order to obtain the 
closest correspondence with the change of topology of the orbits of the given map. 

We wish to stress that the choice of analytic area preserving maps with an elliptic 
fixed point is crucial for the following reason: the map depends only on the phase 
space coordinates r, 9 and r is also the perturbation parameter. The geometry of the 
orbits of the real map is well understood with the help of the resonant normal forms 
and interpolating Hamiltonian and by complexifying the dynamics we have a map of 
Cz only. Moreover these maps are the basic physical model in beam dynamics, where 
they describe the horizontal betratron nonlinear oscillations [ll]. 

This investigation was inspired by h o l d ' s  work on the circle map [12] where the 
analyticity problem of conjugations was raised and numerical H6non work [I31 on 
the quadratic map, whose improvement slowly allowed us to understand the mechanism 
of the series divergence and singularity generation. 

Consider the map M 

where 92 is a rotation matrix, f, g are both analytic in the polydisc of radius 1 (as we 
can always achieve with a scaling), vanish at the origin with their first-order derivatives 
and satisfy the condition that makes M area-preserving. To the special class f = 0, g = 
g(x) belongs the H6non map g = x2. Letting x = @(X, Y), y = @(X, Y) be a change of 
coordinates defined by polynomials of order N in X, Y the normal form at order N 
reads 

where n ( p )  is a polynomial of order [(N - 1)/2] in p, CP= (@, 'P) and FN, GN are 
remainders of order N+ 1 in X, Y. 

Let FN =Zj+*" &X'Y* and define the norm (IFIIR =Z."=* R "  maxj+k-.IF,,kl, in 
the polydisc 1x1 s R, I YI 6 R; the following estimate then holds [ 151 

where we assume 0 / 2 v  to  be diophantine leih,- ll-'S yolkl"O. Letting R < R N / ~  the 
norm of the remainder is bounded by 2-N namely by e~p(-[c'y~R,1-'~"+"' ). 
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Introducing polar coordinates according to X = r cos e, Y = r sin e the map (2) 
reads 

e'= e+n( r2 )  + a(r, e) 
r'= r +  b(r, e). A N :  { (4) 

The functions a, bare analyticin the domain JIm 81 s A, lrl =s RN e-A/4andare bounded 
by 2-N; the map (4) preserves the measure r+p(r ,  e) where g is analytic in IIm 01s 
A, IrI s RN eCA/4 and bounded by 2-N. 

Before quoting the domains where the map (4) is analytically conjugated with the 
integrable map N 

N: [ e'= 8+n(r2)  
r '= r 

we recall that the asymptotic analysis of the series shows that when the frequency n 
passes through a resonance 2lrp/q, then a pole appears in the conjugation function 
@, Correspondingly the perturbation series is affected by the divisor eiqv - 1 starting 
at order N 3 q - 1 and behaves as a geometric series whose ratio is determined by the 
pole [lo]. Consequently the analytic continuation by Pad6 approximants of the Fourier 
components turned out to be effective. The lowest Fourier components affected by the 
pole are k = 1 f q. The best way to understand the pole generation mechanism is to 
use the Siegel-Moser functional equations for the Fourier components. Introducing 
complex coordinates I =  r e-", w = r eie and correspondingly (x E) = (f+ig,f-ig) 
and (G,@) =(@+i'?,@-i'?) the Fourier components (6h are defined by 

 AI, A-lw)},  = A*{&(I, w ) } k  VA E C. (6) 

Observing that the normal form has only the k = + l  Fourier components, we have the 
following equations 

ei(n-w)z-z =if(@, q)}, 

where the choice (a}, = z, (Y}-, = w has been made and the variablesf, @, '? are meant 
to be overlined. By releasing this condition one could for instance impose that n = 
w +n2r2. Equation (7) can be solved recursively starting with @ = z, '? = w, n = w ;  one 
can prove that, at order n of the iteration, the functions @ and agree with the 
perturbation expansion up to order n. Choosing n to be a real polynomial of order n 
the sequence diverges. Letting n itself to be memormorphic but real analytic (real 
poles and real residues are allowed by the perturbative condition) a converging sequence 
of meromorphic functions could be obtained. 

In order to show how the poles are generated we consider the second approximation 
where Cl= w +n,r'. Observing that { @ } k  = ckrlkleik8[1+0(r)] for ( k ( >  1 and choosing 
k = l * m  we see that amplitude { @ } k  has a pole for ( k - l ) o + k n 2 r 2 T 2 d = 0  and 
more explicitly at 

m 2 1 1 ~ ~  0 1  = ,', =- - &E--- 
m + l  -a2 2 n  m 

where I is the closest integer to mw127r 
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The poles in r can be real or imaginary depending on the sign of -n2~,,,. The pole 
for k = 1 - m has the greatest residue ym with ym = lrmlm-2/[( m - l)ln21]. If the pole 
is real, this is precisely the square of the width of the chain of islands corresponding 
to that resonance. Indeed using the resonant normal form with respect to I / m  we find 
an interpolating Hamiltonian [ 161 

r2 n2 H = 27r~"-+- r +. . . + Cr" cos(me+ a) +. . 
2 4  (9) 

The location of hyperbolic and elliptic fixed points of h is at r2=2m,/(-R2) which 
agrees with r, up to the factor ( m  - l ) / m  - 1 and the distance of the separatrices, 
namelythe width ofthe islands is A, =4[C/(2?rl~,1)]'/ 'r~/~- rz/2-' so that Iy,,,I-A:. 
The weight of poles is related to the hierarchy of resonances: for a generic m we have 
I E , , ,  s 1/(2m), while if m belongs to the continued fraction suhequence E, s l /m2.  

No rigorous results are yet available on the convergence on the iterative scheme 
for the Siegel-Moser equations unless we are sufficiently far from the real and imaginary 
r-axis where uniform convergence can be obtained. The singularities generated by the 
sequence of meromorphic functions in the limit n + m are under investigation. They 
could be other than poles or poles accumulation points. The possibility of producing 
algebraic singularities is shown by the functional equation satisfied by the majorant 
function W(r). Retaining only a finite number N of Fourier components it is possible 
to construct a functional equation for the majorant function [17] which, if the initial 
map does not contain quadratic terms (always true after one perturbation step), 
explicitly reads 

c2r2 
r - W(r) 

W ( r ) = r + ,  

where c is a constant and i2 a lower bound to the closest pole; using the diophantine 
estimate we have minlr,12~27r1n21-'yo'N-'(N+ 1)-"0= 7'. The iterative solution of 
(10) has poles at finite order, while w(r) itself has algebraic singularities. By refining 
the procedure the singularity of the majorant function appears to be located at F rather 
than F2 and the estimates (3) of the remainders can be improved by replacing R N  with 
its square root. 

Using the Newton's method according to the scheme proposed by Moser we can 
prove the following 

Theorem 1. The map M N  given by (4). analytic with its invariant measure p in 
IIm 81 < A/2 and 111 < RN e-"/4, with a, b, p bounded by 2-N, is analytically conjugated 
with the integrable map 4 given by ( 5 )  within the strip IImOlsA/4 and the disc 
111 S RN e-"/8 excluding two angular sectors of aperture ,y bisected by the real and 
imaginary axis provided that C2-Nltan xi-'( yo/A'tno)2 < 1. 

As a function of the radius RN the bound on tan ,y reads 

where C, C,, c, are numerical constants. Taking the envelope of the angular sectors 
for N a 2  we obtain as analyticity domain the complement of the disc IrlSR, with 
respect to neighbourhoods of the real and imaginary axis delimited by curves having 
an exponential tangency order at the origin with the real and imaginary axis (see 
figure 1). 
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Figure 1. The analyticity domain (shaded) of the normali2ingtransformation in the complex 
radial plane. The symmetry with respect to the imaginary axis is due to the fact that the 
nonlinear frequency n (see equation (5)) is a function of r'. 

In the proof the invariance with respect to the measure p ( r )  and the presence of 
a fixed point at the origin play an essential role to replace the intersection 
condition [ 5 ] .  

Starting from this initial analyticity domain we can perform analytic continuation 
to reach the real axis at points where the frequency is diophantine. We exclude 
neighbourhoods of the points of the real axis where the frequency is resonant. 

Theorem 2. The map MN can be analytically conjugated with the map A in  IIm 6's A/4 
and in the images by p = r2 of the discs in the p plane defined by: Ip -p.I s lal/2 with 
pc = T + i a  where n ( ~ )  = o provided that C'2"(r/A'+'')'s 1 where r-' = y-l+ uIaI 
with Y = min{l, IOzl/2?r] and y, 7 are the diophantine constants of the frequency 

We remark that we fix the point T on the real axis corresponding to the choosen 
frequency o, which could be non-diophantine or resonant, indeed in this case y-l= 0 
and all our estimates still hold. The consequence of this theorem is that the allowed 
discs are given by 

o=n(T). 

At any diophantine point the conjugacy is possible provided that y-' 2 E2( RN). In 
this case the analyticity domain, envelope at discs, is a cone of aperture ~ / 3  with 
vertex at p = T and axis parallel to the imaginary axis. 

At any point T* such that n(~,) = Z?rp/q is resonant, the conjugacy is possible for 
vial> E2. Consider then the frequencies with a continued fraction expansion o/(2a) = 
(a , ,  . . . , a,, M.. . , M.. . ) where p/q = (a , ,  . . . , a,) with a,, M E  Z and observe that 
for M large y = M  and lo-o.+(=y-'/qz; as a consequence q 2 / T - T * ( + l a l 3 v - ' E z  
bounds the analyticity region. Combining this with the cone estimate at the end points 
T = T* + v-'EZ the non-analyticity region is a rombus with the centre at p = T* and the 
ratio of vertical and horizontal diagonals is 4. This ratio can be optimized just as 
other exponents in the proof. In figure 1 a sketch of the non-analyticity domains is given. 



L432 Letter to the Editor 

The measure of the non-analyticity domain is proportional to E Z ( R N )  and the same 
result holds for the non-analyticity points of the real axis. This estimate exponentially 
small with l / R N  agrees with a theorem by Neishtadt [18]. We notice that if the 
improved estimates on the remainders are used then E , ,  E, are replaced with E:", E:* 
when l2=o+flZ,p"+ ... namely if the first anysochronous term is pm. Then the 
isochronous limit m + m can also be considered: the number of angular sectors in the 
r plane is Zm and covers it densely but simultaneously the measure of the non-analyticity 
domain vanish as m + m. This picture is consistent with Riissmann theorem [ZO] which 
ensures the analyticity in the full disc and similar to the one obtained in the Siege1 
problem [Zl] when the diophantine frequency is approximated with rational numbers. 

To conclude this analysis we say that first integrals of motion exist for the com- 
plexified dynamics. Considering the boundary of the analyticity domain we have a 
Cantor set on the real axis; this allows a good understanding both of the asymptotic 
properties of the perturbation series and of the rise of singularities due to change of 
iopuiugy 01 me urvits. iv~vreuver LIIL: L extensions of frrsi iniegraia, which are io a 
large extent arbitrary, are replaced by the boundary value of the analytic first integrals 
which intersect the real axis in disconnected sets of large measure. The polynomial 
normal forms provide the required interpolation in the gaps with an error which can 
be made exponentially small according to the Nekhoroshev type of estimates. 

A similar analysis can be carried out in the neighbourhood of an hyperbolic or 

analyticity disc around the origin exists in this case and the singularities lie on the 
manifold where the imaginary part of the rotation vanishes, whose distance from the 
origin is finite. Higher dimensional extensions are possible but the greatest difficulty 
in this case is the geometric interpretation of the results. 

r . . ~ ~  - ~ L . _ -  . -~   no^^^.^^^:^^- 

comp!ex fixed point, n?e noma! form consists of a rotation of a complex ang!e; an 
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